
find.24e2271e
Error Type: Functional Bug
Avg. Time: 13.8 min
Explanation: Slightly difficult
Patching: Slightly difficult
Correctness: 75%

If find is set to print the found file’s base directory followed by the found file’s name (-printf ’%H %P\n’) and there exist directories of
different length, then find incorrectly splits base directory and file name during printing. Because the index state.starting path is set only for the
first working directory (ftsfind.c:278-279) the incorrect value of state.starting path is used when printing base directory and file name
(pred.c:709-718, pred.c:813). Examples of Correct Fixes: 1) Recompute state.starting path length for each argv before calling find.
2) Weaken condition that prevents state.starting path length to be reset. Example of Incorrect Fix: Always update state.starting path length
even if ent->fts level != 0 (Regression because it then carries the incorrect ”starting path length”).

find.dbcb10e9
Error Type: Crash
Avg. Time: 22.9 min
Explanation: Slightly difficult
Patching: Slightly difficult
Correctness: 81%

If find is set to print all files that are exactly 2 days old (-mtime 2), it crashes with a segmentation fault. Variable **pend is defined as pointer
pointer (parser.c:2739) and expected to be allocated when xstrtoumax is called (parser.c:2759). However, it is still NULL after the
call such that the null pointer check for pend* is itself a null pointer dereference (parser.c:2762). Examples of Correct Fixes: 1) Add
null pointer check for pend. 2) Change definition of **pend to *pend and update references. 3) Allocate memory for **pend. Examples
of Incorrect Fixes: 1) Remove code containing null pointer dereference (Treating the Symptom). 2) Change the check involving **pend
(Treating the Symptom because the nullpointer is still dereferenced, only the program does not crash).

find.07b941b1
Error Type: Crash
Avg. Time: 23.7 min
Explanation: Slightly difficult
Patching: Slightly difficult
Correctness: 80%

If find is set to search for file matching a regular expression (-regex ’.*’), the argument pointer arg ptr is incremented (parser.c:1644)
before it is used (parser.c:1645) which results in a nullpointer dereference (parser.c:926). Examples of Correct Fixes: 1) Increment
arg ptr *after* argv[*arg ptr] is read. 2) Save the previous value of argv[*arg ptr] in a temporary variable and use this one. Examples of
Incorrect Fixes: 1) Do not increment arg ptr at all (Regression because other arguments may not be parsed at all). 2) Add null-pointer check
(Incomplete Fix because estimate pattern match is still called with a nullpointer).

find.c8491c11
Error Type: Crash
Avg. Time: 31.4 min
Explanation: Slightly difficult
Patching: Slightly difficult
Correctness: 54%

If find is set to print files that are newer than a reference file and this reference file is not specified (-newerXY), find crashes with a segmentation
fault. This is caused by incrementing the argument pointer arg ptr without a bounds check (parser.c:1315) resulting in a null pointer
dereference (lib/quotearg.c:249). Examples of Correct Fixes: Check for nullpointer directly after increment of arg ptr. Examples
of Incorrect Fixes: 1) Check for nullpointer only before or in fatal file error (Incomplete Fix because null pointer might still propagate via
parser.c:1342 or parser.c:1347). 2) Do not increment the pointer at all (Regression because some arguments may not be parsed, at all).

find.6e4cecb6
Error Type: Functional Bug
Avg. Time: 38.2 min
Explanation: Moderately difficult
Patching: Not at all difficult
Correctness: 89%

If find is set to search a directory referenced by a symbolic link and containing a file, and find is set to follow symbolic links (-L) or to
not follow symbolic links except for those set to be searched (-H), then find does not print the file in the referenced directory and instead
reports ”Too many levels of symbolic links”. Because of a mixup in the condition of a ternary operator (find.c:1094), extraflags are set
to O NOFOLLOW when it should be 0 and to 0 when it should be O NOFOLLOW. The flag controls whether symlinks are followed when
a directory is opened (find.c:1097). Because of this fault, safely chdir returns SafeChdirFailSymlink (find.c:1618) whence the error
message is printed (find.c:1642). Example of Correct Fix: Fix ternary operator. Example of Incorrect Fix: Do not fail if safely chdir
returns SafeChdirFailSymlink (Treating the Symptom).

find.091557f6
Error Type: Crash
Avg. Time: 44.8 min
Explanation: Slightly difficult
Patching: Slightly difficult
Correctness: 54%

If find is set to search for files (-type f) while following symbolic links (-L) and a symbolic link loop exists, then it aborts with a coredump
instead of listing the symbolic links and terminating gracefully. If a symbolic link loop exists, no stat information is available and the flag
FTS NS is set (ftsfind:584). The flag is not properly handled (ftsfind.c:425-446), such that state.type and mode are incorrectly
set (ftsfind.c:460) and the assertion fails (pred.c:1578). Example of Correct Fix: Handle FTS NS flag. Examples of Incorrect
Fixes: 1) Remove violated assertion (Treating the Symptom). 2) Force stat() to be called such that stat information is available (Incorrect
Workaround because stat() is not supposed to be called on symlink loops).

find.24bf33c0
Error Type: Crash
Avg. Time: 45.1 min
Explanation: Moderately difficult
Patching: Slightly difficult
Correctness: 50%

If find is set to search for files (-type f) while following symbolic links (-L) and a symbolic link loop exists, then it still prints the looping
links while an error message is expected. If a symbolic link loop exists, no stat information is available and the flag FTS NS is set
(ftsfind.c:586). The flag is not properly handled (ftsfind.c:431-446) so that the links are printed (pred.c:1459). Example of
Correct Fix: Handle FTS NS as error IF symlink loop. Examples of Incorrect Fixes: 1) Handle FTS NS as error independent of whether
it is a symlink loop (Regression because FTS NS alone does not indicate an error). 2) Handle all flags as error (Regression because not all
flags indicate errors).

find.183115d0
Error Type: Resource Leak
Avg. Time: 49.2 min
Explanation: Slightly difficult
Patching: Slightly difficult
Correctness: 83%

If we ulimit the number file descriptors that can be open simulatanously and set find to execute ls for every subdirectory (-execdir ls ’{}’
\;), it quickly runs out of file descriptors. File descriptors are always opened (pred.c:520) but never closed (pred.c:659-664) which
raises an error when no more descriptors are available (pred.c:579). Example of Correct Fix: Close file descriptor as soon as it is not
used anymore. Example of Incorrect Fix: Close random file descriptor (Incomplete Fix because still leaking file descriptors).

find.93623752
Error Type: Functional Bug
Avg. Time: 50.8 min
Explanation: Moderately difficult
Patching: Slightly difficult
Correctness: 92%

There are two errors: 1) If find is set to search for files that were changed in the last n days but n is not a number (-ctime x), then find
complains about a ”missing” argument instead of reporting the ”incorrect” argument. Function parse time calls collect args to assign the current
argument argv[*arg ptr] to timearg and increment the argument pointer arg ptr (parser.c:3102). When timearg is failed to be parsed as a
number, parse time returns without decrementing arg ptr (parser.c:3127-3128). When the error is reported (tree.c:1248-1271),
the argument pointer points to NULL directly after the incorrect argument (tree.c:1250), such that the error is reported as missing
argument instead of invalid argument. 2) If find is set to search for files belonging to a certain group but the group-id is not specified or not a
number (-gid x), then find crashes with a segmentation fault. When the argument following the -gid option is being parsed (parser.c:913),
insert num returns NULL because argv[*arg ptr] is NULL or not a number (parser.c:3235-3259). This nullpointer remains unchecked
and is dereferenced leading to a segmentation fault (parser.c:914). When nullpointer dereference is fixed the same symptom is observed
for -gid as for -ctime because the argument pointer is also forgot to be decremented. Examples of Correct Fixes: For first error, 1)
decrement/restore arg ptr when parsing of second argument of an option fails or 2) use copy of old argument during error-reporting. For
second error, add null pointer check. Example of Incorrect Fix: For first error, decrement argument pointer before even calling parse time
(Regression because even correct arguments are reported as incorrect ones).

find.66c536bb
Error Type: Functional Bug
Avg. Time: 55.5 min
Explanation: Moderately difficult
Patching: Slightly difficult
Correctness: 92%

If find is set to print files that are strictly younger than 2 days (-mtime -2), it will instead print files that are exactly 2 days old. The
function get comp type actually increments the argument pointer timearg (parser.c:3175). So, when the function is called the first time
(parser.c:3109), timearg still points to ’-’. However, when it is called the second time (parser.c:3038), timearg already points to ’2’
such that it is incorrectly classified as COMP EQ (parser.c:3178). Examples of Correct Fixes: 1) Save timearg in auxiliary variable
and restore after first call to get comp type. 2) Pass a copy of timearg into the first call of get comp type. 3) Pass a copy of timearg into
get relative timestamp (which calls get comp type the second time). 4) Decrement timearg after the first call to get comp type. Example
of Incorrect Fix: Restore timearg only if classified as COMP LT (Incomplete Fix because it does not solve the problem for -mtime +2).

find.b445af98
Error Type: Functional Bug
Avg. Time: 56.5 min
Explanation: Moderately difficult
Patching: Slightly difficult
Correctness: 50%

If find is set to search a directory containing a symbolic link, to not follow any symbolic links (except for those specified on the command
line; -H), and to print only symbolic links (-type l), then find does not print the link. The root cause is that state.cur depth is used before
it is set. When digest mode checks whether to follow symlinks (util.c:629), state.curdepth is still 0 (util.c:607), so that mode are
incorrectly set to follow symlinks (util.c:630-636). Only later state.curdepth is set (ftsfind.c:230). Because of the incorrect value
of mode, it is incorrectly decided not to print the file (pred.c:1749). Example of Correct Fix: Move state.curdepth assignment to shortly
before digest mode is called. Examples of Incorrect Fixes: 1) Change check to match incorrect value (0) of state.curdepth (Treating the
Symptom). 2) Force stat() to be called such that stat information is available (Incorrect Workaround because stat() is not supposed to be called
on symlink loops).

find.ff248a20
Error Type: Infinite Loop
Avg. Time: 57.7 min
Explanation: Moderately difficult
Patching: Moderately difficult
Correctness: 40%

If find is set to search a directory containing a symbolic link that references an ancistor directory and if find is set to follow symlinks (-follow),
then it runs indefinitely. The global variable dir ids tracks the directories that have already been visited. The function process path would
correctly exit with a loop warning (find.c:1428-1434) if the current directory (in stat buf) has already been visited. However, after the
current directory is correctly added to those that have already been visited (find.c:1442), the same entry is overriden with uninitialized
values (find.c:1621) such that the current directory is never marked as already visited. Examples of Correct Fixes: 1) Remember
whether stat() has been called. If not done, call stat() before overriding dir ids[dir curr] at find/find.c:1621. 2) Always stat() before overriding
dir ids[dir curr] at find/find.c:1621 such that statbuf is initialized. 3) Only overwrite dir ids[dir curr] if statbuf is initialized. Examples of
Incorrect Fixes: 1) Never override dir ids[dir curr] (Regression because it isn’t overridden when it should be). 2) Follow links to a maximum
depth of 1 (Regression because symlinks might need to be followed to an arbitrary depth).

find.e6680237
Error Type: Functional Bug
Avg. Time: 76.4 min
Explanation: Moderately difficult
Patching: Moderately difficult
Correctness: 27%

If find is set to search a directory containing three other directories which contain the folder ”bug” and to execute pwd in every folder containing
the folder ”bug” (-name bug -execdir pwd \;), then find prints the first directory three times. The reason is that the working directory specified
in execp->wd for exec is set only once (pred.c:513-527) and never updated. Examples of Correct Fixes: 1) Correct buggy if-condition
by substituting excep->wd for exec by execp->todo. 2) If is exec in local dir, then always reallocate execp->wd for exec and remove
the assertion. Example of Incorrect Fix: Remove if-condition such that it always redefines execp->wd for exec and keep assertion that
execp->todo is false (Regression because execp->todo might be true such that assertion may fail).

find.e1d0a991
Error Type: Functional Bug
Avg. Time: 88.2 min
Explanation: Very difficult
Patching: Very difficult
Correctness: 17%

If find is set to a directory containing a file, to follow symbolic links (-L), and to execute ls for every subdirectory (-execdir ls ’{}’ \;),
then find incorrectly also prints the base directory. If find is set to follow symlinks, the flag FTS LOGICAL is set (ftsfind.c:349)
before the directory search is initiated (ftsfind.c:364). When a directory is searched (ftsfind.c:373), the working directory
is not changed because FTS LOGICAL is set. Hence, the *full* pathname is passed as argument to execdir (pred.c:484-490 and
pred.c:467-471). Example of Correct Fix: Correctly compute pathname and prefix in new impl pred exec. Example of Incorrect
Fix: Remove FTS LOGICAL flag (Incorrect Workaround because FTS LOGICAL is supposed to be set).

grep.55cf7b6a
Error Type: Functional Bug
Avg. Time: 21.1 min
Explanation: Slightly difficult
Patching: Not at all difficult
Correctness: 91%

If grep is set to silently skip devices, FIFOs, and sockets (-D skip), then grep does not search on standard input when no file is provided. When
the skip option is enabled, variables devices is set to SKIP DEVICES (main.c:1852-1859). If no file is provided, variable file is NULL
and variable desc is set to STDIN FILENO (main.c:1217-1218). The code which handles SKIP DEVICES (main.c:1246-1255)
decides to skip STDIN (which is a special device) even though it should not (desc == STDIN FILENO). Examples of Correct Fixes: 1) Do
not skip if desc is set to STDIN FILENO. 2) Do not skip if file is not set (and thus desc is set to STDIN FILENO). Example of Incorrect
Fix: Negate the skip condition (Regression because it skips everything that should not be skipped while indeed not skipping STDIN).

grep.54d55bba
Error Type: Crash
Avg. Time: 26.7 min
Explanation: Slightly difficult
Patching: Slightly difficult
Correctness: 69%

If grep is set to search in all files under each directory recursively (-r) but to exclude certain directories (–exclude-dir=foo), then grep
crashes with a segmentation fault. When grepdir computes the name space (src/grep.c:1361), it calls function isdir1 via function
savedir (lib/savedir.c:123). Now, the code in isdir1 that is supposed to remove the trailing slashes from the directory name uses
the uninitialized variable path instead of variable dir (lib/savedir.c:51). The nullpointer dereference results in a segmentation fault.
Example of Correct Fix: Substitute path with dir. Examples of Incorrect Fixes: 1) Return if path is not initialized (Regression because
isdir1 returns false even if dir is a directory). 2) Only use path if initialized (Regression because isdir1 does not remove trailing slashes).

grep.9c45c193
Error Type: Functional Bug
Avg. Time: 37.7 min
Explanation: Moderately difficult
Patching: Slightly difficult
Correctness: 83%

If grep is set to search only specific files (–include=a.txt), then grep does not print a match even if there is one. First, main correctly adds the
include pattern with EXCLUDE INCLUDE flag set (grep.c:2136-2140). When the files are chosen for the search, files that are supposed
to be included are actually excluded because the return value of excluded file name is unnecessarily negated (grep.c:2267-2269). The
negation is unnecessary because the function exclude file name is incorrectly assumed to treat excludes and includes the same. However, the
behavior changes if the EXCLUDE INCLUDE flag is present (lib/exclude.c:410, lib/exclude.c:359). Examples of Correct
Fixes: 1) Remove negation such that included patterns are not excluded during classification. 2) Do not set EXCLUDE INCLUDE flag
for included patterns which effectively negates the faulty condition. Example of Incorrect Fix: Independent of whether a file matches the
included pattern, never exclude (Regression because it doesn’t skip files that are *not* in the included patterns).

grep.5fa8c7c9
Error Type: Infinite Loop
Avg. Time: 38.8 min
Explanation: Moderately difficult
Patching: Slightly difficult
Correctness: 50%

If grep is set to search for fixed strings (-F), the empty string is given (””), and the locale is UTF8, then grep runs undefinitely. When
FExecute searches for a match of the empty string, variable len contains the size of the match; here, len=0 (kwsearch.c:106).
Because len=0, the check is mb middle (searchutils.c:117-146) whether the match occurs within a multibyte character returns
true (kwsearch.c:108). However, the size of the supposed multibyte character is computed as mb len=1 (kwsearch.c:115). When
mb len-1 is added to beg (kwsearch.c:118) to advance behind the supposed multibyte character, beg’s value remains unchanged. The
loop is continue’d (kwsearch.c:121). Since beg has the same value every time the loop exit condition is checked (kwsearch.c:101),
the loop exit condition never holds, resulting in an infinite loop. Examples of Correct Fixes: 1) Function is mb middle returns false for
len=0. 2) Only call is mb middle if len is set. 3) Jump to success if mb len==1. Examples of Incorrect Fixes: 1) Remove continue (Treating
the Symptom). 2) Don’t reset beg (Regression because it breaks multibyte character handling). 3) Remove part of the check which causes
is mb middle to return true (Regression because it breaks multibyte character handling). 4) Do not compute match size but teturn complete
buffer until end of line (Regression because only match should be returned).

grep.db9d6340
Error Type: Infinite Loop
Avg. Time: 40.6 min
Explanation: Slightly difficult
Patching: Slightly difficult
Correctness: 45%

If grep conducts a fixed-strings search (-F) for a pattern that contains multibyte characters, then it runs indefinitely. When EXECUTE FCT
finds a match in the middle of a multibyte character, it is supposed to continue after the multibyte character (search.c:638-639).
However, the beginning of the next multibyte character is not found, and mb start remains unchanged (search.c:228-256). After beg is
assigned mb start minus 1, the loop is continue’d (search.c:640). The loop exit condition never holds (search.c:632) because beg
never exceeds buf + size, resulting in an infinite loop. Examples of Correct Fixes: 1) Raise an error, if is mb middle is unsuccessful in
finding the beginning of the multi-byte and adjusting mb start. 2) Go to after the current match. Examples of Incorrect Fixes: 1) Remove
continue (Treating the Symptom). 2) Do not reset beg (Regression because it breaks multibyte character handling).

grep.2be0c659
Error Type: Functional Bug
Avg. Time: 47.2 min
Explanation: Moderately difficult
Patching: Moderately difficult
Correctness: 13%

If grep conducts a case-insensitive search (-i) in a file containing 8-bit characters and the current locale is Turkish UTF8, then grep prints the
wrong output. When grep conducts a case-insensitive search, it lowers the case of the input string before matching (search.c:384-392).
The lower case of an upper-case 8-bit character might occupy one more or less bytes. The latter case is not handled. When the match size
is computed (grep.c:1081), the lower-case match is used (grep.c:1060-1062). When the match is printed, the incorrect lower-case
match size which is usually larger than the actual match size is used (grep.c:1085-1091). Examples of Correct Fixes: 1) Update the
map that maps lower-case character to the normal case characters to account for cases where the number of bytes it occupies *decreases*
in the lower-case. 2) To correct the match size, lower-case as many characters in the normal-case match as result in match size lower-case
characters. Examples of Incorrect Fixes: 1) Return complete line if match exists (Regression because only the match should be returned).
2) Add the difference in length of lower-case and normal-case string to the match size (Incomplete Fix because for files that have more
multibyte characters than given in the match, grep reports longer matches than needed).

grep.8f08d8e2
Error Type: Functional Bug
Avg. Time: 48.4 min
Explanation: Moderately difficult
Patching: Moderately difficult
Correctness: 75%

If grep is set to search for lines containing whole words that match a regular expression (-w), it prints only the match instead of the complete
line. When execute searches for a match, it correctly sets variable len to the length of the match (search.c:388). When it is checked if
the match aligns with word bounderies (search.c:408-414), the match length len still points to the end of the match. So, execute returns
the length of the match instead of the end of the line (grep.c:997). Examples of Correct Fixes: 1) Add statement: goto success (which
updates len with end - beg). 2) Update len with end - beg. Example of Incorrect Fix: Always return complete line (Regression because in
some settings grep should return only the match).

grep.58195fab
Error Type: Functional Bug
Avg. Time: 50.5 min
Explanation: Moderately difficult
Patching: Slightly difficult
Correctness: 82%

If grep is set to search all TXT files (–include=”*.txt”) but excluding some files (–exclude=”foo.txt”), then grep also searches files that are not
TXT ignoring the include option. Because included patterns is not initialized with EXCLUDE WILDCARDS (src/grep.c:2137), the
exclude pattern is not added in add exclude (lib/exclude.c:449). Files are matched exactly (treating ”*.txt” as file name) instead of using
wildcards (lib/exclude.c:417-427). These files are then incorrectly classified as included/excluded (src/grep.c:2261-2271).
Examples of Correct Fixes: 1) Add EXCLUDE WILDCARDS flag for includes. 2) Add EXCLUDE INCLUDE flags for excludes if there
are includes. Examples of Incorrect Fixes: 1) Substitute EXCLUDE INCLUDE with EXCLUDE WILDCARDS for includes (Regression
because EXCLUDE INCLUDE flags must also be set for includes). 2) Negate condition that decides whether to exclude (Regression because
files that are specified to be excluded are now included).

grep.c1cb19fe
Error Type: Functional Bug
Avg. Time: 58.4 min
Explanation: Very difficult
Patching: Slightly difficult
Correctness: 71%

If grep searches for string specified in a bracket expression, then for some UTF8 locales (ru RU.UTF-8) grep does not print a match. For some
locales dfaparse sets the global flag hard LC COLLATE (dfa.c:1418) to denote that characters are ordered in a strange way (e.g. Russian
cyrilic). If hard LC COLLATE is set, then lex prepares the info about the letters in the bracket expression and finally calls in coll range
(dfa.c:1103-1116). Now, in coll range uses the correct function strcoll to compare the letters, but the condition is incorrect and the
wrong character are selected to be in the range that is specified by the bracket expression. Hence, there is no match reported. Example of
Correct Fix: Fix the simple operator fault. Examples of Incorrect Fixes: 1) Fix locale, such that multibyte characters do not need to be
handled (Regression because LC ALL is supposed to be handled). 2) Implement in coll range as locale implemented match (Regression
because match is supposed to be locale dependent).

grep.7aa698d3
Error Type: Functional Bug
Avg. Time: 59.9 min
Explanation: Moderately difficult
Patching: Moderately difficult
Correctness: 13%

If grep conducts a case-insensitive search (-i) on an input that contains multibyte characters and the locale is UTF8, then grep prints a match of
incorrect length. When conducting the case-insensitive search, EXECUTE FCT first computes a lower-case of the input (search.c:388).
The length of the match is computed for the match in the lower-case input (search.c:555). However, the lower-case of a multibyte
character can take 1 byte less. So, the length of the normal-case and lower-case input differ. The computed value of match size could be half
the expected value (grep.c:1081-1085). Hence, the match in the normal-case input is printed with incorrect length (grep.c:1091).
Example of Correct Fix: Add a mapping between normal-case and lower-case string to compute the length of the match in the normal-case
string from the length of the match in the lower-case string. Examples of Incorrect Fixes: 1) Do not lower the case (Regression because
a case-insensitive search is case-sensitive). 2) If matched string contains a multibyte char, double the match size (Incomplete Fix because it
works only of all are multibyte characters). 3) Print complete line if there is a match (Regression because only match should be returned).

grep.3220317a
Error Type: Crash
Avg. Time: 63.7 min
Explanation: Moderately difficult
Patching: Moderately difficult
Correctness: 20%

If grep searches for a bracket expression containing a multibyte character in a file that contains multibyte characters and the current locale
is UTF8, then grep crashes with a segmentation fault. When parse bracket exp parses the next character, array index c is assigned EOF
(-1) if the character is multibyte (dfa.c:498, dfa.c:363) while wc is assigned the correct index. However, when parse bracket exp
calls setbit case fold (dfa.c:697) it uses c which overflows during the cast from int to unsigned. After setbit case fold has called setbit
(dfa.c:274), the array is accessed at a too large index which causes a segmentation fault (dfa.c:168). Example of Correct Fix: Use
wc instead of c (which equals c if the character is not multibyte). Examples of Incorrect Fixes: 1) Check for overflow condition c=EOF
(Treating the Symptom because multibyte characters are still handled incorrectly). 2) Use an arbitrary value instead of c (Treating the Symptom
because while it does not crash, the bracket expression is not correctly handled).

grep.3c3bdace
Error Type: Crash
Avg. Time: 64.8 min
Explanation: Very difficult
Patching: Moderately difficult
Correctness: 70%

If grep searches for a certain extended regular expression (-E ’(ˆ|)*(| $)’), then it crashes with a coredump. When dfaanalyze allocates memory
for merged.elems (dfa.c:1728), it allocates insufficient memory because merged.elems can grow to twice the original size (dfa.c:1455).
Then memory is corrupted when the array is accessed out of bounds (dfa.c:1453). Only later the program crashes because of the corrupted
memory (dfa.c:1917). Examples of Correct Fixes: 1) Allocate twice or 3x as much for merged.elems. 2) Reallocate as needed. Example
of Incorrect Fix: Always reset the number of elements (nelem) to 0 (Regression because we always override the first element).

grep.c96b0f2c
Error Type: Functional Bug
Avg. Time: 67.6 min
Explanation: Very difficult
Patching: Moderately difficult
Correctness: 50%

If grep conducts a case-insensitive search (-i) for the empty line (’ˆ$’) and an UTF-8 locale is set, then grep reports matches even for
non-empty lines. For case-sensitive searches or 8-bit locales, execute is called with the complete buffer and correctly returns no match
(grep.c:1045-1046). Otherwise, execute is called for each line (grep.c:1048-1063). However, execute does not handle the case
when no match is found (search.c:388), which is why the non-match is printed (grep.c:1091). Examples of Correct Fixes: 1) Handle
case where no match was found by breaking loop if next beg == buflim. 2) Skip printing if match is empty and we are not in inversion mode
(-v). Example of Incorrect Fix: Skip printing if match is empty even if in inversion mode (Regression because it breaks inversion mode).

Fig. 1. Complete list of errors and their average debugging time, difficulty, and patch correctness, with human-generated explanations of the runtime actions
leading to the error, and examples of correct and incorrect fixes, sorted according to average debugging time (zoom required).

